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where is Würzburg ?



Würzburg



My astrophysics colleague Fritz Röpke is an expert in simulating supernovae Ia 
explosions. Here is a simulation of his of a supernovae Ia explosion.







2 Rescaled equations

2.1 The notion of an asymptotic scaling

It thus appears natural to introduce arbitrary scalings of the quantities appearing in the equations of
inviscid hydrodynamics
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Later conditions on these scalings will narrow the arbitrariness. Take first
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The tilde-quantities are assumed to be asymptotically constant (O(1)) – they need not be completely
independent of ✏. Thus instead of the word “scaling” a better description would be “asymptotic
scaling”.

Note that some people prefer to additionally extract a factor carrying the dimension of the re-
spective quantity. This however is completely irrelevant, moreover the usual identification between
non-dimensional and Mach-number-rescaled equations is wrong. Out of these dimensional prefactors
they manage to construct something of the form of a Mach number (called reference Mach number),
a construction that is equally unnecessary.

The so far arbitrary scalings are now taken to be subject to three conditions:

i) Every member of the family parametrized by ✏ shall fulfill the Euler equations.

ii) Every member of the family parametrized by ✏ shall have the usual equation of state.

iii) The local Mach number shall scale as ✏.

2.2 Conditions on the scalings

For calculations it is easier to go through these conditions in the inverse order.

iii) The local Mach number shall scale as ✏:
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In slight abuse of notation one can rewrite the system as
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Note however that M, Str, Fr here are not really the Mach, Strouhal and Froude numbers, but place-
holders that are just of the same order in ✏ as the local numbers. Clearly, just as the Mach number,
the local Strouhal and Froude number vary in space in time and thus surely cannot be described by
just one number.

3 Advantages of this approach

Surely these equations are the same, as those obtained by people who use reference quantities, non-
dimensionalisation and so on. To obtain the same equations is however not justification enough to
continue usage of a way of their derivation.
The view should instead be that with the three above conditions alone the equations follow already in
full generality and thus most of the things done in the usual approach are unnecessary. Additionally,
the peculiar own technicalities of the usual approach obscure the view and typically do not make the
Strouhal number appear, i.e. lead only to a special case of the system.

The advantages in short:

• No question about whether the tilde-quantities are dimensionless or not – the equations follow
independently of dimensions and units.

• No need of a discussion of whether to scale p as ⇢v2 or as ⇢c2, a question that lets some physical
intuition enter, and thus makes the derivation’s generality questionable – here this question never
appeared.

• No need to define ✏ as some representative of a local Mach number, a notion that is ill-defined
– here it is replaced by the precise condition of the local Mach number to be asymptotically
proportional to ✏.

• No dimensionless number is forgotten – they all appear naturally.

• No need to define reference scales of space and time, which is impossible to circumvent in the
usual approach because otherwise the units do not cancel out – here you still can make them
change with ✏, but it is absolutely fine just to ignore them.

4 Some notes on the incompressible limit

4.1 Hidden dependences

Mind that the dependence of a quantity on ✏ does not restrict itself to an overall scaling. Surely
17 2 O(1), but so is 17 + 5✏2 � 2✏10. Unfortunately when it comes to derivatives things become more

4

The Euler equations with gravity:

non-dimensionalize these equations:

obtain Mach, Froude & Strouhal numbers



set Strouhal number = 1

set Froude number = Mach number

Consider flow that is a perturbation of the hydrostatic equilibrium, the flow is then 
close to incompressible flow.

Gravity

Pressure

Hydrostatic equilibrium

Thus we need a solver that

- maintains hydrostatic equilibria well
- can solve low (as well as high) Mach number flow well

The system of Euler equations with gravity

⎧
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∂tρ + ∂xρu = 0

∂tρu + ∂x

(

ρu2 + p
)

= −ρ∂xφ

∂tE + ∂x(u(E + p)) = −ρu∂xφ

Steady states

At the continuous level, the steady states at rest are governed by the
ODE

{

u ≡ 0,

∂xp = −ρ∂xφ.

We cannot obtain an explicit expression of all the steady states.
→ We have to define the steady states at the discrete level.

V. Desveaux A well-balanced relaxation scheme NumHyp 2013 2 / 12

- 1 space dim. 
-  stationary 
-  set velocity = 0

means time scale depends 
on length and velocity scale 

means internal energy ~ 
gravitational energy



our goal:

1.   solves both low and high Mach numbers flow 
2.   is well balanced 
3.   is stable 
4.   preserves kinetic energy for low Mach numbers

•  for the Euler equations with gravity find a scheme that 



Madison 2015 Friedrich Röpke & Wasilij Barsukow

Low Mach number hydro

zero-Mach number limit of Euler equations (e.g. Guillard & Viozat 1999):

We begin by considering the homogeneous Euler equations

Goal: find a scheme that solves both low and high number well.
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Roe solver

► finite-volume scheme

► Godunov-type numerical flux function (quasilinear, flux Jacobian                    )

► Roe scheme:                   →  flux Jacobian evaluated at Roe-average state

► “upwind artificial viscosity” introduced to stabilize scheme, must not dominate physical

flux

→ how do flux Jacobian and Roe matrix scale with reference Mach number?

physical flux          “upwind term”, numerical dissipation
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► Godunov-type numerical flux function (quasilinear, flux Jacobian                    )

► Roe scheme:                   →  flux Jacobian evaluated at Roe-average state

► “upwind artificial viscosity” introduced to stabilize scheme, must not dominate physical

flux

→ how do flux Jacobian and Roe matrix scale with reference Mach number?

physical flux          “upwind term”, numerical dissipation

solve this using a finite volume scheme 

astrophysicists like to use the Roe scheme



Low Mach number asymptotics of compressible, inviscid hydro numerics

Define a parameter R+ 3 M ⇠ M(x, t) := |v(x, t)|
,s
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and Str = M

some power ⇠ (local) Strouhal number.

What happens with numerical solutions when M ! 0? Miczek+ 2015

Example: Roe solver
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�! dimensionally split Roe-type schemes, . . .�! asymptotic preserving schemes? beyond formal analysis?

Further reading: Guillard&Viozat 1999, Birken&Meister 2005, Dellacherie 2010, Rieper 2011, Dellacherie+ 2013, . . .

Further interests:

stability of low Mach solvers, checkerboard modes and their excitation mechanisms

multi-d solvers for low Mach flow, (bi)characteristics methods

field theoretic problems for hydrodynamics, . . .
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central flux
“dissipation”

for low Mach number the dissipation dominates central flux
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1

M

2

grad p̃ = 0 (2)

@

t

e+ div (v(e+ p)) = 0 with e =

p

� � 1

+

1

2

%|v|2 Str @

˜

t
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higher oder terms



thus one needs to modify the dissipation term

Find a modification such that  

•    for high Mach it behaves like the Roe scheme 
•    for low Mach number the dissipation of the stabilization term is  
sufficiently low 

•    for flow near the incompressible regime the total kinetic energy  
is well conserved 

•    the scheme is linearly stable



stability: 

Near the incompressible regime, the solver discretizes the divergence free 
condition for the velocity, a checkerboard instability may arise.

Multi-d solver using characteristics

Figure : Simulation results at time intervals 0.05 for M = 10�4. Colour coded is the
pressure. .

Wasilij Barsukow (U Wü) Solver for linear acoustics June 3, 2015 30 / 41
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The two lowest orders can be simplified (for ` = 0, 1 one has p(`) = (��1)e(`))
to formally yield in the limit M ! 0:
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The rest of the asymptotic analysis is done with the O(1) equations, which due
to the consistency of the scheme give consistent discretizations of the remaining
equations in the limit M ! 0.

4 Linear stability of explicit time discretization

The investigation of linear stability with the von Neumann method yields results
on the time behaviour of Fourier modes for a linear(ized) conservation law. If all
of the modes are damped in time, the method is called linearly stable. Surely a
necessary requirement is that the method is stable already in one spatial dimension
and when integrated in time by a first order method. For simplicity, the following
stability analysis is performed with piecewise constant reconstruction, i.e. on a
method that is first order in space and time.
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to obtain, by defining �x k =: �,

Un+1 = [id� ⌫ (Aj sin� +D(1� cos�))]Un (30)

The expression in square brackets is called amplification matrix. Stability of such
iterated linear maps needs all its eigenvalues to be less than 1 in absolute value.
TODO: Actually – how about non-diagonalizable matrices? ! singular
value decomposition? Or maybe Jordan normal form which gives us the
eigenvalues + a nilpotent matrix?

Consider the following system
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which shall be solved with a time-explicit scheme of Roe-type with a di↵usion
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The Jacobian of 1-d hydrodynamics in primitive variables is of this type. As the
stability analysis is linear, the equation may be considered in any variables, not
necessarily the conserved ones. Moreover, the study of the eigenvalues � of the
amplification matrix in (30) equally does not depend on the chosen basis. The
property of the di↵usion matrix of having just one non-zero entry in the %-column
will be fulfilled by the one appearing via preconditioning.
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Equation (35) is just the stability condition for the truncated matrices of a
reduced system

A

red

=

✓
a a

23

a

32

a

◆
D

red

=

✓
d

22

d

23

d

32

d

33

◆
(36)

Note that the elements a
12

, d
12

and d

13

are irrelevant for stability.
Equation (35) can be rewritten as

✓
1� ⌫

✓
aj sin� +

d

22

+ d

33

2
(1� cos�)

◆
� �

◆
2

= ⌫

2(A+ Bj) (37)

We identified in a linear stability analysis that these modes survive neutral 
stability. Hence we do not allow that, and these instabilities go away.

||                                                            || < 1  

Title Suppressed Due to Excessive Length 7

to obtain, by defining �x k =: �,

Un+1 = [id� ⌫ (Aj sin� +D(1� cos�))]Un (30)

The expression in square brackets is called amplification matrix. Stability of such
iterated linear maps needs all its eigenvalues to be less than 1 in absolute value.
TODO: Actually – how about non-diagonalizable matrices? ! singular
value decomposition? Or maybe Jordan normal form which gives us the
eigenvalues + a nilpotent matrix?

Consider the following system

@

t

0

@
q

1

q

2

q

3

1
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0

@
a a

12

0
0 a a

23

0 a

32

a

1

A
@

x

0

@
q

1

q

2

q

3

1

A = 0 (31)

which shall be solved with a time-explicit scheme of Roe-type with a di↵usion
matrix

D =

0

@
d

11

d

12

d

13

0 d

22

d

23

0 d

32

d

33

1

A (32)

The Jacobian of 1-d hydrodynamics in primitive variables is of this type. As the
stability analysis is linear, the equation may be considered in any variables, not
necessarily the conserved ones. Moreover, the study of the eigenvalues � of the
amplification matrix in (30) equally does not depend on the chosen basis. The
property of the di↵usion matrix of having just one non-zero entry in the %-column
will be fulfilled by the one appearing via preconditioning.

The eigenspace decomposes into

1� ⌫(aj sin� + d

11

(1� cos�)) = � (33)

and

[1� ⌫(aj sin� + d

22

(1� cos�))� �][1� ⌫(aj sin� + d

22

(1� cos�))� �] (34)
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(1� cos�)][a
23

j sin� + d

23

(1� cos�)] (35)

Equation (33) is easily recognized as a 1-dimensional stability result. It leads to
the stability condition d

11

� |a| and if d

11

= |a| (as will turn out later in the
specific example), then ⌫ <

1

d11
.

Equation (35) is just the stability condition for the truncated matrices of a
reduced system
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(36)

Note that the elements a
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, d
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and d
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are irrelevant for stability.
Equation (35) can be rewritten as

✓
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(1� cos�)

◆
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= ⌫
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kinetic energy: 

near the incompressible regime, one can show that the solution preserves 
kinetic energy.

new scheme should maintain kinetic 

energy for low Mach number

Roe scheme dissipates kinetic  energy



It is tricky to find a dissipation matrix that satisfies all these conditions, 
especially in two space dimensions, but here is one example:

Madison 2015 Friedrich Röpke & Wasilij Barsukow

Flux preconditioning

► modify upwinding (numerical dissipation) term (e.g. Turkel 1999)

► several preconditioning matrices possible; most do not fully correct low Mach number

scaling of dissipation term, unsuitable for astrophysical flows

► new low Mach number preconditioner (Miczek, Röpke, Edelmann 2015):

It adapts to the local Mach number, thus resorting back to Roe’s scheme for Mach 
number ~ 1

Madison 2015 Friedrich Röpke & Wasilij Barsukow

Flux preconditioning

► modify upwinding (numerical dissipation) term (e.g. Turkel 1999)

► several preconditioning matrices possible; most do not fully correct low Mach number

scaling of dissipation term, unsuitable for astrophysical flows

► new low Mach number preconditioner (Miczek, Röpke, Edelmann 2015):



consistency of the modified scheme with incompressible 
flow for M -> 0

Title Suppressed Due to Excessive Length 5

The solutions to

@

t

%+r · (%v) = 0 (14)

@

t

(%v) +r ·
⇣
%v ⌦ v +

p

M

2

⌘
= 0 (15)

@

t

E +r · (v(E + p)) = 0 (16)

tend to solutions of the incompressible Euler equations in the limit of low Mach
numbers [TODO: refs: klainerman/majda, metivier/schochet, ebin 77,
?? who did this for the full (i.e. not the isentropic) system?]. This can
formally be seen by expanding all quantities as series in M , e.g. for the pressure
this would give

p(x, t) = p

(0)(x, t) +Mp

(1)(x, t) +M

2

p

(2)(x, t) +O(M3) (17)

Inserting these into the above equations, collecting order by order and assuming
impermeable boundaries gives

p

(0) = const (18)

p

(1) = const (19)

(r · v)(0) = 0 (20)

and

@

t

%

(0) + v

(0) ·r%

(0) = 0 (21)

@

t

v

(0) + (v(0) ·r)v(0) +rp

(2)

/%

(0) = 0 (22)

The equation for the kinetic energy E

kin

= %|v|2
2

can be rewritten as

@

t

E

kin

+r ·
⇣
v

⇣
E

kin

+
p

M

2

⌘⌘
=

p

M

2

r · v (23)

The source term vanishes for incompressible flows and in this case the kinetic
energy becomes a conserved quantity. For compressible flows, this is true in the
limit M ! 0 as well, despite of r·v

M

2 62 O(M). Expanding the quantities and using
(18) and (19) makes the terms proportional to 1

M

or 1

M

2 cancel and gives

@

t

E

kin

+r ·
⇣
v

⇣
E

kin

+ p

(2)

⌘⌘
= p

(2)r · v (24)

Now the source term indeed is O(M).
The same asymptotic analysis can be performed for the semi-discrete system

[?]. With, for simplicity, a piecewise constant reconstruction, the numerical flux in
x-direction is given by

F
i+

1
2
=

1
2
(F(U

i+1

) + F(U
i

))� 1
2
D

i+

1
2
(U

i+1

�U
i

) (25)

where D is taken to be P

�1|PA|, evaluated in the Roe state, and A is the Jaco-
bian in x-direction (indices for the other directions have been dropped for better
readability). The fluxes through the other interfaces can be obtained analogously.
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Taking � 2 O �
1

M

�
, by construction the leading order terms in M of the dif-

fusion matrix are the same as in the Jacobian. Thus in the basis of conserved
variables

P

�1|PA| = 1
M

2

0

BBBB@

0 0 0 0 0
0 0 0 0 � � 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1

CCCCA
+O(1) (26)

A conservative scheme with flux (25) then is

0 = @

t

U
i

+
F

i+

1
2
� F

i� 1
2

�x

+ fluxes through other interfaces

and to highest order

0 = @

t

U
i

+
1

2�x

2

66664
1

M

2

0

BBBB@

0
p

i+1

� p

i�1

0
0
0

1

CCCCA
� � � 1

M

2

0

BBBB@

0
p

i+1

� 2p
i

+ p

i�1

0
0
0

1

CCCCA

3

77775
+O(M)

The two lowest orders can be simplified (for ` = 0, 1 one has p(`) = (��1)e(`))
to formally yield in the limit M ! 0:

p

(`)

i

� p

(`)

i�1

= 0 ` = 0, 1 (27)

The rest of the asymptotic analysis is done with the O(1) equations, which due
to the consistency of the scheme give consistent discretizations of the remaining
equations in the limit M ! 0.

4 Linear stability of explicit time discretization

The investigation of linear stability with the von Neumann method yields results
on the time behaviour of Fourier modes for a linear(ized) conservation law. If all
of the modes are damped in time, the method is called linearly stable. Surely a
necessary requirement is that the method is stable already in one spatial dimension
and when integrated in time by a first order method. For simplicity, the following
stability analysis is performed with piecewise constant reconstruction, i.e. on a
method that is first order in space and time.

Express every quantity Un

i

by a Fourier series in space (j2 = �1):

Un

i

=
X

k2Z
Un exp(jik�x) (28)

insert this into the fully discrete scheme (⌫ = �t

�x

)

Un+1

i

= Un

i

� 1
2
⌫ (A(Un

i+1

�Un

i�1

)�D(Un

i+1

� 2Un

i

+Un

i�1

)) (29)

to highest order:
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The rest of the asymptotic analysis is done with the O(1) equations, which due
to the consistency of the scheme give consistent discretizations of the remaining
equations in the limit M ! 0.

4 Linear stability of explicit time discretization

The investigation of linear stability with the von Neumann method yields results
on the time behaviour of Fourier modes for a linear(ized) conservation law. If all
of the modes are damped in time, the method is called linearly stable. Surely a
necessary requirement is that the method is stable already in one spatial dimension
and when integrated in time by a first order method. For simplicity, the following
stability analysis is performed with piecewise constant reconstruction, i.e. on a
method that is first order in space and time.

Express every quantity Un
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by a Fourier series in space (j2 = �1):
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e.g. pressure to highest order:
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Implicit time integration

► spatial discretization (“method of lines”) yields

► explicit time integration → stability requires limiting of time step due to sound speed:

► implicit time integration → accuracy requires limiting of time step due to fluid velocity:

► gain: implicit time step larger by factor

► tests imply that implicit time stepping more efficient below 

► implicit time stepping using “Explicit first stage, Singly Diagonally Implicit Runge-Kutta”

(ESDIRK) schemes 



To solve this implicitly we need to solve a very large system 
of equations. 

We can show that the condition number of our new scheme 
is rather good.

1.   solves both low and high Mach numbers flow 
2.   is stable 
3.   preserves kinetic energy for low Mach numbers 
4.   the inversion of the large linear system arising from implicit time 
discretization has a good condition number

•  for the Euler equations find a scheme that 
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Scaling on HPC systems

Strong scaling results

on JUQUEEN

Test problem: Taylor–

Green vortex on 5123 

grid

All runs performed

with 16 MPI tasks per

node and 4 threads

per task using the

BiCGSTAB(5) solver



This is a “Gresho vortex” with an un-modified Roe scheme:



decay of kinetic energy for the un-modified Roe scheme: 



This is a “Gresho vortex” with the modified scheme

Madison 2015 Friedrich Röpke & Wasilij Barsukow

Low Mach number hydro

► tested down to 

Madison 2015 Friedrich Röpke & Wasilij Barsukow

Low Mach number hydro

► tested down to 
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2.2.3 Practical Remarks

In Chapter 4, a modification of Eq. (2.24) will be used for fitting the numerical
spectra. For that purpose, the von Kármán spectrum

E
Kár.

(k) := C

Kár.

· (k2 + k

2

L0
)� 5

6 exp

✓
� k

2

k

2

l0

◆
, (2.25)

shall be introduced, which is basically defined as a Kolmogorov spectrum with cut-
o↵s at each end of the inertial subrange. The parameters are C

Kár.

2 R+

0

·(cm 4
3 s�2),

k

L0 , kl0 2 R+

0

·(cm�1) with k

L0  k

l0 . For k ⌧ k

L0 the value of E
Kár.

is constant, for
k � k

l0 it vanishes. These model spectra are illustrated schematically in Fig. 2.1.
Due to practical reasons (cf. Chapter 4) the reduced von Kármán spectrum, defined

log(k)

lo
g(

E(
k
)/

E(
k

0

))

inertial
subrange

k

L0 k

l0 log(k)

lo
g(

c
(E

(k
))

)
inertial

subrange

k

L0 k

l0

E
Kol.

E
Kár.

E
red. Kár

Figure 2.1: Schematic graphs of the Kolmogorov function E
Kol.

(cf. Eq. (2.24)), the
von Kármán function E

Kár.

(cf. Eq. (2.25)), and the reduced von Kármán function
E

red. Kár.

(cf. Eq. (2.26)). In the left plot the graphs and in the right plot their
compensated spectra c(E(k)) (cf. Eq. (2.27)) are shown with double logarithmic
axes each. The corresponding k values k

l0 from Eq. (2.25) and Eq. (2.26), and k
L0

from Eq. (2.25) are marked.

by

E
red. Kár.

(k) := C

red. Kár.

· k

� 5
3 exp

✓
� k

2

k

2

l0

◆
, (2.26)

is used in some cases in which the constant cut-o↵ for small k in the von Kármán
spectrum leads to problems as fit function. Analogous to the corresponding
definition of the von Kármán function, the parameters are C

red. Kár.

2 R+

0

·
(cm

4
3 s�2), k

l0 2 R+

0

· (cm�1).

turbulence spectrum of 
incompressible flow à la 

Kolomogorov

same with presented as a 
compensated spectrum
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WELL-BALANCED UNSTAGGERED CENTRAL SCHEMES FOR THE

EULER EQUATIONS WITH GRAVITATION

R. TOUMA, U. KOLEY, AND C. KLINGENBERG

Abstract. We consider the Euler equations with gravitational source term and propose a new
well-balanced unstaggered central finite volume scheme, which can preserve the hydrostatic
balance state exactly. The proposed scheme evolves a non-oscillatory numerical solution on a
single grid, avoids the time consuming process of solving Riemann problems arising at the cell
interfaces, and is second-order accurate both in time and space. Furthermore, the numerical
scheme follows a well balanced discretization that first discretizes the gravitational source term
according to the discretization of the flux terms, and then mimics the surface gradient method
and discretizes the density and energy according to the discretization of steady state density
and enregy functions, respectively. Finally, several numerical experiments demonsrtating the
performance of the well-balanced schemes in both one and two spatial dimensions are presented.
The results indicate that the new scheme is accurate, simple, e�cient and robust.

1. Introduction

1.1. The model. Many interesting physical phenomena are modeled by the Euler equations with
gravitational source terms. These equations express the conservation of mass, momentum and
energy, which take the form in two dimensions

(1.1)

8
>>><

>>>:

⇢
t

+ (⇢u)
x

+ (⇢v)
y

= 0,

(⇢u)
t

+
�
⇢u2 + p

�
x

+ (⇢uv)
y

= �⇢�
x

,

(⇢v)
t

+ (⇢uv)
x

+
�
⇢v2 + p

�
y

= �⇢�
y

,

E
t

+ ((E + p)u)
x

+ ((E + p)v)
y

= �⇢u�
x

� ⇢v�
y

.

Here, ⇢ denotes the fluid density, (u, v) is the velocity field, p represents the pressure, and E =
1
2⇢(u

2 + v2) + p/(� � 1) is the non-gravitational energy which includes the kinetic and internal
energy of the fluid. Furthermore, � is the ratio of specific heats and � = �(x, y) is the time
independent gravitational potential. When the variation of the unknowns in the y-direction are
negligible, one may find the one-dimensional version of (1.1) by setting v and all the derivatives
in the y-direction to zero, thus obtaining the system

(1.2)

8
><

>:

⇢
t

+ (⇢u)
x

= 0,

(⇢u)
t

+
�
⇢u2 + p

�
x

= �⇢�
x

,

E
t

+ ((E + p)u)
x

= �⇢u�
x

.

Equation (1.2) has been used to study the atmospheric phenomena that are essential in numer-
ical weather prediction[2], and in climate modeling as well as in a wide variety of contexts in
astrophysics such as modeling solar climate or simulating supernova explosions[11, 7].

The Euler equation with gravitation (1.1) amounts to a system of balance laws,

(1.3) U
t

+ F(U)
x

+G(U)
y

= �S(U),

Date: October 20, 2014.
Key words and phrases. Euler equations; Well-balanced; Unstaggered central schemes; Finite volume methods;

Gravitational field.

1

We continue by considering the Euler equations with gravity

First we find a well balanced method



The system of Euler equations with gravity

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tρ + ∂xρu = 0

∂tρu + ∂x

(

ρu2 + p
)

= −ρ∂xφ

∂tE + ∂x(u(E + p)) = −ρu∂xφ

ρ: density
u: velocity
E = ρe + ρu2/2: total energy, with e the internal energy
p = p(ρ, e): pressure given by a general law
φ(x): gravitational potential (example: φ(x) = gx)

Hyperbolicity assumption:

c2 := ∂ρp +
p

ρ2
∂ep > 0

V. Desveaux A well-balanced relaxation scheme NumHyp 2013 2 / 12



The system of Euler equations with gravity

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tρ + ∂xρu = 0

∂tρu + ∂x

(

ρu2 + p
)

= −ρ∂xφ

∂tE + ∂x(u(E + p)) = −ρu∂xφ

We define
! the vector of conservative variables w = (ρ, ρu, E)T ,
! the flux function f (w) = (ρu, ρu2 + p, u(E + p))T ,
! the source term s(w) = (0, −ρ, −ρu)T ,

to rewrite the system into the compact form

∂tw + ∂x f (w) = s(w)∂x φ.

The set of physical admissible states is

Ω =
{

w ∈ R
3, ρ > 0, E − ρu2/2 > 0

}

.

V. Desveaux A well-balanced relaxation scheme NumHyp 2013 2 / 12



The system of Euler equations with gravity

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tρ + ∂xρu = 0

∂tρu + ∂x

(

ρu2 + p
)

= −ρ∂xφ

∂tE + ∂x(u(E + p)) = −ρu∂xφ

Steady states

At the continuous level, the steady states at rest are governed by the
ODE

{

u ≡ 0,

∂xp = −ρ∂xφ.

We cannot obtain an explicit expression of all the steady states.
→ We have to define the steady states at the discrete level.

V. Desveaux A well-balanced relaxation scheme NumHyp 2013 2 / 12

at rest



for any given 
temperature profile 

you can find a 
hydrostatic 
equilibrium
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the steady states for Euler with gravity may be complicated

pressure

temperature



there are some well-balanced methods for Euler with gravity in the literature:

they maintain specific equilibria,

- Randy LeVeque
- Chi-Wang Shu
- Roger Käppeli, Sid Mishra
- Maria Lukacova

maintains all equilibria

- Alina Chertock

………
………



2 Well-balanced scheme for Euler equations with gravity

isothermal stationary solutions is presented in [10]. Using the source term formulation of [15], a
non-staggered central scheme which is well-balanced for isothermal stationary solutions is devel-
oped in [14]. Well-balanced schemes that satisfy an approximation to the hydrostatic equations
have been developed using the approach of relaxation schemes [2, 1], in which an approximation
to the hydrostatic solution is built into the solution of the approximate Riemann solver.

In this paper, we propose a novel second order accurate well-balanced scheme for Euler equa-
tions with gravity under the ideal gas assumption. The basic approach we take is a Godunov-type
finite volume scheme with reconstruction to achieve higher order accuracy. The same scheme
is automatically well-balanced for both isothermal and polytropic hydrostatic solutions, i.e., it
exactly (upto machine precision) preserves the exact hydrostatic solution and this property is
independent of the type of gravitational potential. The proposed scheme involves a special dis-
cretization of the source terms which is similar to [15] and a reconstruction scheme that uses
scaled variables, combined with a numerical flux which preserves stationary contact waves. The
scaled variables are chosen so that the pressure is constant in case of the hydrostatic solution,
which is crucial to achieving well-balanced property. The scheme only requires the gravitational
potential to be known at the cell centers where the other variables are also located. These prop-
erties make it attractive to implement the proposed scheme in production codes which also rely
on second order reconstruction schemes and contact-preserving numerical flux functions, which
can be done with small modifications to the reconstruction process and source term discretiza-
tion. In more recent work, the current scheme has also been extended to the case of curvilinear
meshes which are useful in some applications, like simulation of stellar interiors. We have also
extended the current scheme to general equation of state where we can preserve an approximate
hydrostatic solution upto machine precision.

The rest of the paper is organized as follows. Section (2) introduces the 1-D Euler equations
and its hydrostatic solutions. Section (3) describes the newly proposed well-balanced scheme
in 1-D where we also show that the modified source term discretization we use is second order
accurate. Section (4) presents some 1-D numerical results to demonstrate its well-balanced
property. Section (5) extends the 1-D scheme to the case of 2-D Cartesian meshes. Section (7)
presents some 2-D results and we finally end the paper with some conclusions.

2. 1-D Euler equations with gravity. Consider the system of compressible Euler equa-
tions in one dimension which models conservation of mass, momentum and energy and are given
by

@⇢

@t
+

@

@x
(⇢u) = 0

@

@t
(⇢u) +

@

@x
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More details on the reconstruction step are given in section (3.3).
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3.1. Well-balanced property. We now state the basic result on the well-balanced prop-
erty. The case of isothermal and polytropic stationary solutions are identified after the source
term discretization is explained since this requires a specific form of discretization.

Theorem 3.1. The finite volume scheme (3.3) together with a numerical flux which satisfies
contact property and reconstruction of w variables is well-balanced in the sense that the initial
condition given by

(3.4) ui = 0, pi exp(� i) = const, 8 i

is preserved by the numerical scheme.
Proof: Let us start the computations with an initial condition that satisfies (3.4). Since we

reconstruct the variables w, at any interface i+ 1

2

we have
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Since the numerical flux satisfies contact property, we have

f̂i� 1
2
= [0, pi� 1

2
, 0]>, f̂i+ 1

2
= [0, pi+ 1

2
, 0]>

The flux in mass and energy equations are zero and the gravitational source term in the energy
equation is also zero. Hence the mass and energy equations are already well balanced, i.e.,
dq(1)

i
dt = 0 and

dq(3)
i
dt = 0. It remains to check the momentum equation. On the left we have

f̂ (2)

i+ 1
2
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2
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2
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2
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while on the right
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2
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2
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and hence
dq(2)

i
dt = 0. This proves that the initial condition is preserved under any time integration

scheme.
Remark 2. It is possible to reconstruct density and still retain the result of the previous the-

orem. In the isothermal case, the quantity ⇢e� is constant and we can expect the reconstruction
of density to be more accurate if we scale the density as in the w variables.

Remark 3. For a general temperature profile, the quantities  i have to be approximated by
quadrature, so that the initial condition in (3.4) is only an approximation to the exact stationary
solution. However, by using a special quadrature rule which we explain in next section, we show
in Theorem (3) that isothermal and polytropic stationary solutions satisfy equation (3.4) and
hence are preserved by the finite volume scheme. A numerical example of a general stationary
solution is given in section (4.4).

3.2. Approximation of source term. Up to this point we have not specified how to
approximate  (x). The well-balanced property of the scheme as stated in Theorem 1 is in-
dependent of the particular appoximation scheme used to compute  . In order to preserve

Well-balancing means preserving for the numerical scheme the following:

We show that with fluxes like Roe or HLLC this is can be achieved.

.
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(a) (b)

(c) (d)

Fig. 8. Rayleigh-Taylor instability in radial gravitational field obtained with well-balanced scheme. Plots of
density at times (a) t = 0, (b) t = 2.9 (c) t = 3.8 (d) t = 5.0. Darker colour indicates larger values.
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using a well-
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Discrete steady states and well-balanced scheme

Space discretization: cells [xi−1/2, xi+1/2) with constant size
∆x = xi+1/2 − xi−1/2

wn
i : approximation of the solution of the system at time tn on the

cell [xi−1/2, xi+1/2)

Discretization of the potential φ: φi =
1

∆x

∫ xi+1/2

xi−1/2

φ(x)dx

Definition (Discrete steady states)

An approximation (wn
i )i∈Z is a discrete steady state, if for all i ∈ Z, we

have
un

i = 0, and pn
i+1 − pn

i = −
ρn

i
+ρn

i+1
2 (φi+1 − φi).

Definition (Well-balanced scheme)

A numerical scheme is well-balanced if for all discrete steady state
(wn

i )i∈Z, the scheme satisfies wn+1
i = wn

i , for all i ∈ Z.

V. Desveaux A well-balanced relaxation scheme NumHyp 2013 3 / 12
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It is possible to determine the speeds of the approximate Riemann solver such 
that it is quite accurate while still maintaining the subcharacteristic condition 
which implies entropy consistency.

The Riemann solution to the relaxation system is easy to find because it is 
linearly degenerate.

In addition this approximate Riemann solver satisfies a discrete version of the 
entropy condition:

Notice that if (2.17) holds for some σl, σr, then it also holds for σl
′ ≤ σl and

σr
′ ≥ σr, because of the convexity of U and of the formulas

Ul +
F (Ul, Ur) − F (Ul)

σl
′

=
(
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σl

σl
′

)
Ul +

σl

σl
′
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Ul +
F (Ul, Ur) − F (Ul)

σl
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,
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σr
′

=
(
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σr

σr
′

)
Ur +

σr

σr
′

(

Ur +
F (Ul, Ur) − F (Ur)

σr

)

.

(2.18)

Proposition 2.5 (i) If the scheme preserves an invariant domain U (Defi-
nition 2.3), then its numerical flux preserves U by interface (Definition 2.4),
with σl = −∆xi/∆t, σr = ∆xi+1/∆t.
(ii) If the numerical flux preserves an invariant domain U by interface (Defi-
nition 2.4), then the scheme preserves U (Definition 2.3), under the half CFL
condition |σl(Ui, Ui+1)|∆t ≤ ∆xi/2, σr(Ui−1, Ui)∆t ≤ ∆xi/2.

Proof. For (i), apply (2.16) with Ui−1 = Ui = Ul, Ui+1 = Ur. We get the first
line of (2.17) with σl = −∆xi/∆t. Similarly, applying the inequality (2.16)
corresponding to cell i + 1 with Ui = Ul, Ui+1 = Ui+2 = Ur gives the second
line of (2.17) with σr = ∆xi+1/∆t. Conversely, for (ii), define the half-cell
averages

Un+1−
i+1/4 = Ui − 2

∆t

∆xi
(F (Ui, Ui+1) − F (Ui)),

Un+1−
i−1/4 = Ui − 2

∆t

∆xi
(F (Ui) − F (Ui−1, Ui)).

(2.19)

Then we have

Un+1
i =

1

2
(Un+1−

i−1/4 + Un+1−
i+1/4 ). (2.20)

According to the remark above and since σl(Ui, Ui+1) ≥ −∆xi/(2∆t) and
σr(Ui−1, Ui) ≤ ∆xi/(2∆t), we can apply (2.17) successively with Ul = Ui,
Ur = Ui+1, σl replaced by −∆xi/(2∆t), and with Ul = Ui−1, Ur = Ui, σr

replaced by ∆xi/(2∆t). This gives that Un+1−
i+1/4 , Un+1−

i−1/4 ∈ U , thus by convexity

Un+1
i ∈ U also.

2.2.2 Entropy inequalities

Definition 2.6 We say that the scheme (2.5)-(2.6) satisfies a discrete en-
tropy inequality associated to the convex entropy η for (1.8), if there exists a
numerical entropy flux function G(Ul, Ur) which is consistent with the exact
entropy flux (in the sense that G(U, U) = G(U)), such that, under some CFL
condition, the discrete values computed by (2.5)-(2.6) automatically satisfy

η(Un+1
i ) − η(Un

i ) +
∆t

∆xi
(Gi+1/2 − Gi−1/2) ≤ 0, (2.21)

with
Gi+1/2 = G(Un

i , Un
i+1). (2.22)
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Notice that if (2.17) holds for some σl, σr, then it also holds for σl
′ ≤ σl and

σr
′ ≥ σr, because of the convexity of U and of the formulas

Ul +
F (Ul, Ur) − F (Ul)

σl
′

=
(
1 −

σl

σl
′

)
Ul +

σl

σl
′

(

Ul +
F (Ul, Ur) − F (Ul)

σl

)

,

Ur +
F (Ul, Ur) − F (Ur)

σr
′

=
(
1 −

σr

σr
′

)
Ur +

σr

σr
′

(

Ur +
F (Ul, Ur) − F (Ur)

σr

)

.

(2.18)

Proposition 2.5 (i) If the scheme preserves an invariant domain U (Defi-
nition 2.3), then its numerical flux preserves U by interface (Definition 2.4),
with σl = −∆xi/∆t, σr = ∆xi+1/∆t.
(ii) If the numerical flux preserves an invariant domain U by interface (Defi-
nition 2.4), then the scheme preserves U (Definition 2.3), under the half CFL
condition |σl(Ui, Ui+1)|∆t ≤ ∆xi/2, σr(Ui−1, Ui)∆t ≤ ∆xi/2.

Proof. For (i), apply (2.16) with Ui−1 = Ui = Ul, Ui+1 = Ur. We get the first
line of (2.17) with σl = −∆xi/∆t. Similarly, applying the inequality (2.16)
corresponding to cell i + 1 with Ui = Ul, Ui+1 = Ui+2 = Ur gives the second
line of (2.17) with σr = ∆xi+1/∆t. Conversely, for (ii), define the half-cell
averages

Un+1−
i+1/4 = Ui − 2

∆t

∆xi
(F (Ui, Ui+1) − F (Ui)),

Un+1−
i−1/4 = Ui − 2

∆t

∆xi
(F (Ui) − F (Ui−1, Ui)).

(2.19)

Then we have

Un+1
i =

1

2
(Un+1−

i−1/4 + Un+1−
i+1/4 ). (2.20)

According to the remark above and since σl(Ui, Ui+1) ≥ −∆xi/(2∆t) and
σr(Ui−1, Ui) ≤ ∆xi/(2∆t), we can apply (2.17) successively with Ul = Ui,
Ur = Ui+1, σl replaced by −∆xi/(2∆t), and with Ul = Ui−1, Ur = Ui, σr

replaced by ∆xi/(2∆t). This gives that Un+1−
i+1/4 , Un+1−

i−1/4 ∈ U , thus by convexity

Un+1
i ∈ U also.

2.2.2 Entropy inequalities

Definition 2.6 We say that the scheme (2.5)-(2.6) satisfies a discrete en-
tropy inequality associated to the convex entropy η for (1.8), if there exists a
numerical entropy flux function G(Ul, Ur) which is consistent with the exact
entropy flux (in the sense that G(U, U) = G(U)), such that, under some CFL
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Summary for approximate Riemann solver via 
relaxation:

• with pencil and paper determine the stability 
condition

• for coding determine an algebraic formula for 
“optimal” speeds

• this will guarantee stability (“positivity”)



In this spirit we embed system of compressible gas dynamics into a 
more “complete model”.

A MULTIWAVE APPROXIMATE RIEMANN SOLVER FOR IDEAL MHD BASED ON RELAXATION 3

The simplest approximate Riemann solver is the HLL solver [14], which consists of two discon-
tinuities separating a constant intermediate state. Conservativity (1.16) implies

(1.18) RHLL(ξ, Ul, Ur) =

⎧

⎪

⎨

⎪

⎩

Ul , ξ < Cl
CrUr−ClUl−f(Ur)+f(Ul)

Cr−Cl
, Cl < ξ < Cr

Ur , Cr < ξ

where the signal velocities Cl and Cr must be chosen properly.
Conditions of stability, like positivity or entropy consistency, is usually much more subtle to

prove than consistency and conservativity. For the HLL solver, finding good signal velocities Cl

and Cr is crucial for stability. They must be chosen larger than the fastest characteristic speeds
over a certain subset of state space, for example the subset containing the exact solution. In fact,
the size of these signal speeds controls the amount of artificial diffusion applied by the scheme.
This means that if the signal speeds are too large, the scheme will not have optimal accuracy.
Such conditions also govern the behaviour of more complex solvers.

1.2. Relaxation schemes. Although no rigorous proof is known, it is physically reasonable to
think of the continuum descriptions of hydrodynamics as limiting cases of the kinetic descriptions
of statistical mechanics. One could also expect that when taking such a limit, only physically
admissible shocks would be permitted. For these reasons there has been, and still is, a lot of
research performed on such limits. This philosophy has also been used as a way to design numerical
methods. The full Boltzmann equation is a little complicated, so the simpler BGK models have
been used. The Suliciu relaxation scheme results from a very simple form of a BGK model.

For smooth solutions one may write

(1.19) (ρp)t + (ρup)x + ρ2p′(ρ)ux = 0

for an isentropic gas. This motivates the Suliciu relaxation system

ρt + (ρu)x = 0

(ρu)t + (ρu2 + π)x = 0

Et + [(E + π)u]x = 0

(ρπ)t + (ρπu + c2u)x = ρ
p − π

ϵ
(1.20)

where p is replaced by the new variable π and c replaces the Lagrangian sound speed ρ
√

p′(ρ). We
say that the system is at equilibrium when π = p, in analogy with kinetic theory. In the isentropic
case this has been shown to converge as ϵ→ 0 in [18].

The evolution of (1.20) may be replaced by the so called transport-projection method, as
introduced in [5]. In this method only the homogenous part (i.e. with zero right hand side)
is evolved, and at discrete time steps the solution is projected back to the equilibrium, which
in this case means setting π = p. In this way the timestep ∆t takes the role of the relaxation
parameter ϵ. This means that if we can solve the homogenuous part of (1.20) system we will have
an approximation scheme for the Euler equations.

The homogenous part of (1.20) has characteristic speeds u− c
ρ , u and u + c

ρ . The intermediate
speed has multiplicity 2. All of the characteristic fields are linearly degenerate, and have strong
Riemann invariants, hence the Riemann problem is easy to solve. This motivates the following
modification of the transport-projection algorithm: Assume that we have given piecewise constant
data ρi, ρui and Ei at time t over a uniform grid of size h. Then set π = pi, and evolve the
homogenuous Suliciu system until time t + ∆t with ∆t ≤ h

2c . At this time we find the new
averages ρi, ρu and Ei, and the process may start again. One may check quite easily check that
here the exact solution to the homogenuous Suliciu system acts as an approximate Riemann solver
for the Euler equations.

Note that the constant c in (1.20) represents the signal speeds of the corresponding approximate
Riemann solver. Hence it is not surprising that it plays the same crucial role for the convergence

(ρu)t + (ρu
2 + p)x = 0

Et +
(

u(E + p)
)

x
= 0

ρt + (ρu)x = 0

For smooth solutions of the Euler equations

we can write an evolution equation for the pressure:
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Replace p by a new dependant variable � and let c replace the soundspeed �
�

p�(�)

Siliciu (1990), Coquel, et.al. (1999)



the enlarged system has a small parameter            s.th.ϵ > 0

ϵ > 0

ϵ = 0

enlarged system

original system

The constant c replaces the sound speed, which is a nonlinear function. 
The advantage of the extended system is that by making the pressure a new 
dependent variable it easy to solve the Riemann problem for the homogeneous 
part of the extended system (all eigenvalues are degenerate).  



wave speeds for the 
system of extended 

gasdynamics:

t

x

(multiplicity 2)

waves for the original 
system of gasdynamics:

u
u

u� cl

�
u +

cr

�



The choice of     determines the “stability’ of 
this relaxation. 

It ensures an entropy inequality.  

This is analyzed à la Chen, Levermore, Liu 
(1994) allowing for rigorous justification.  

c > �
�

p�(�) “subcharacteristic condition”

Absolutely essential is the choice of the constant 

c

(replacing the sound speed).c

t

x

uu� cl

�
u +

cr

�

Ul

U�
l

U�
r

Ur

⇤� ⇥ [�l, �
�
l ], �2

�
⇤p

⇤�

⇥

s

� c2
l

⇤� ⇥ [�r, �
�
r ], �2

�
⇤p

⇤�

⇥

s

� c2
r

more precise:



For practical purposes, in order to devise a formula for a 
numerical scheme, one has to choose a particular value for     
out of the possible values the inequality allows for.

c

if pr � pl ⇤ 0,

⇤
⌃⌃⌃⌃⇧

⌃⌃⌃⌃⌅

cl

⇥l
=

⌥
p�(⇥l) + �

�
pr � pl

⇥r

⌥
p�(⇥r)

+ ul � ur

⇥

+

,

cr

⇥r
=

⌥
p�(⇥r) + �

�
pl � pr

cl
+ ul � ur

⇥

+

,

if pr � pl ⇥ 0,

⇤
⌃⌃⌃⌃⇧

⌃⌃⌃⌃⌅

cr

⇥r
=

⌥
p�(⇥r) + �

�
pl � pr

⇥l

⌥
p�(⇥l)

+ ul � ur

⇥

+

,

cl

⇥l
=

⌥
p�(⇥l) + �

�
pr � pl

cr
+ ul � ur

⇥

+

.

Bouchut (2004)

This ensures the optimal properties of this approximate Riemann solver.



phase space:

dependent variables of the original system

additional 
dependent 

variables of the 
extended system

equilibrium
manifold

the solution of
the original 
system lives 

here
(ρu)t + (ρu

2 + p)x = 0

Et +
(

u(E + p)
)

x
= 0

ρt + (ρu)x = 0

π

ρ, u, E

ϵ
→

0

� = p

Illustrate relaxation solver in phase space



Numerical procedure in phase space:

dependent variables of the original system

additional 
dependent 

variables of the 
extended system

equilibrium
manifold

the solution of
the original 

system      lives 
here

n∆t

(n + 1)∆t

(n + 1)∆t
−

evolution
projection

S

This results in a numerical method for the original system.



It is possible to extend the entropy      of the original system of gas dynamics to an entropy             

such that for               the extended entropy converges to the original entropy.

equilibrium
manifold

π

ρ, u, E

Sextended

S

Sextended

�� 0

SextendedS
of the system of extended gas dynamics



this procedure translates Riemann solvers for the extended system 
to Riemann solvers for the original system 

• preserves 

• can handle vacuum

• this ensures that the “second law of thermodynamics” is 
satisfied by the numerical solution of our original system

ρ ≥ 0



next we show how to find a relaxation method for Euler with 
gravity based on this relaxation idea



The Suliciu model for the Euler equations with gravity
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tρ + ∂xρu = 0
∂tρu + ∂x(ρu2 + π) = −ρ∂xφ
∂tE + ∂x(u(E + π)) = −ρu∂xφ
∂tρπ + ∂x(u(ρπ + ν2)) = ρ

ε (p(ρ, e) − π)

The relaxation parameter ν > 0 must satisfy the Whitham condition:

ν2 > ρ2c2.

Eigenvalues Riemann invariants

u ± ν
ρ u ± ν

ρ , π ∓ νu, ν2e − π2

2 , φ

u (×2) u, π, φ

0 ρu, π + ν2

ρ , ν2e − π2

2 , φ + u2

2 − ν2

2ρ2

Difficulties to compute the solution of the Riemann problem:

the order of the eigenvalues is not determined a priori

there are strong nonlinearities in the Riemann invariants for the
eigenvalue 0

V. Desveaux A well-balanced relaxation scheme NumHyp 2013 5 / 12

or subcharacteristic cond.:

we shall see,  

this partic
ular 

relaxation does not 

work



NEXT: new idea: artificially change the speed of u



Relaxation model with moving gravity

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂tρ + ∂xρu = 0
∂tρu + ∂x(ρu2 + π) = −ρ∂xa

∂tE + ∂x(u(E + π)) = −ρu∂xa

∂tρπ + ∂x(u(ρπ + ν2)) = ρ
ε (p(ρ, e) − π)

∂ta + u∂xa = 1
ε (φ − a)

Eigenvalues Riemann invariants

u ± ν
ρ u ± ν

ρ , π ∓ νu, ν2e − π2

2 , a

u (×3) u

The order of the eigenvalues is fixed: u − ν
ρ < u < u + ν

ρ

There is a missing invariant for the eigenvalue u

⇒ we need a closure equation

V. Desveaux A well-balanced relaxation scheme NumHyp 2013 6 / 12



The Riemann problem
uL −

ν
ρL u∗ uR +

ν
ρR

ρL uL

eL πL

aL

ρ∗L u∗

e∗L π∗

L

aL

ρ∗R u∗

e∗R π∗

R

aR
ρR uR

eR πR

aR

7 unknowns:
u∗, ρ∗

L,R, e∗
L,R, π∗

L,R

6 equations given by the
Riemann invariants
u ± ν

ρ , π ∓ νu, ν2e − π2

2

Closure equation:
π∗

R − π∗
L = −ρL+ρR

2 (aR − aL)

Solution of the Riemann problem

u∗ =
uL + uR

2
−

πR − πL

2ν
−

ρL + ρR

2

aR − aL

2ν
π∗

L = πL + ν(uL − u∗) π∗
R = πR + ν(u∗ − uR)

1

ρ∗
L

=
1

ρL
+

u∗ − uL

ν

1

ρ∗
R

=
1

ρR
+

uR − u∗

ν

e∗
L = eL +

π∗
L

2 − πL
2

2ν2
e∗

R = eR +
π∗

R
2 − πR

2

2ν2
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missing

equations for u* missing



next idea: we introduce two new speeds: u*+∂ and u*- ∂



Reformulation into a fully determined model
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂tρ + ∂xρu = 0

∂tρu + ∂x(ρu2 + π) = −X−+X+

2 ∂xa

∂tE + ∂x(u(E + π)) = −X−+X+

2 u∂xa

∂tρπ + ∂x(u(ρπ + ν2)) = ρ
ε (p(ρ, e) − π)

∂ta + u∂xa = 1
ε (φ − a)

∂tX
− + (u − δ)∂xX− = 1

ε (ρ − X−)

∂tX
+ + (u + δ)∂xX+ = 1

ε (ρ − X+)

Eigenvalues Riemann invariants

u ± ν
ρ u ± ν

ρ , π ∓ νu, ν2e − π2

2 , a, X−, X+

u (×3) u, π + X−+X+

2 a, X−, X+

u − δ ρ, u, e, π, a, X+

u + δ ρ, u, e, π, a, X−

For δ small enough, the order of the eigenvalues is fixed:
u − ν

ρ < u − δ < u < u + δ < u + ν
ρ

There is a full set of Riemann invariants
V. Desveaux A well-balanced relaxation scheme NumHyp 2013 8 / 12



The Riemann problem for the reformulated model

uR +
ν
ρR

u∗
+ δu∗u∗

− δ

uL −

ν
ρL

ρL
uL eL
πL aL
X−

L X+

L

ρR
uR eR

πR aR X−

R X+

R

ρ∗L u∗

e∗L π∗

L
aL

X−

L X+

L

ρ∗L u∗

e∗L π∗

L

aL
X−

R

X+

L

ρ∗R u∗

e∗R π∗

R

aR
X−

R

X+

L

ρ∗R u∗

e∗R π∗

R

aR X−

R X+

R

7 unknowns:
u∗, ρ∗

L,R, e∗
L,R, π∗

L,R

7 equations given by
the Riemann invariants
u± ν

ρ , π∓νu, ν2e− π2

2 ,

π+ X
−+X

+

2 a

The equations coming from the Riemann invariants u± ν
ρ , π∓νu and

ν2e− π2

2 are the same as in the previous model.

The last equation is π∗
R − π∗

L = −
X−

R
+X+

L

2 (aR − aL). For an initial
data at the relaxation equilibrium (i.e. π = p(ρ, e), a = φ,
X± = ρ), we recover the closure equation of the previous model.

The two models have the “same” solution of the Riemann problem for
an initial data at the relaxation equilibrium.
⇒ both models lead to the same numerical scheme.
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Discrete steady states and well-balanced scheme

Space discretization: cells [xi−1/2, xi+1/2) with constant size
∆x = xi+1/2 − xi−1/2

wn
i : approximation of the solution of the system at time tn on the

cell [xi−1/2, xi+1/2)

Discretization of the potential φ: φi =
1

∆x

∫ xi+1/2

xi−1/2

φ(x)dx

Definition (Discrete steady states)

An approximation (wn
i )i∈Z is a discrete steady state, if for all i ∈ Z, we

have
un

i = 0, and pn
i+1 − pn

i = −
ρn

i
+ρn

i+1
2 (φi+1 − φi).

Definition (Well-balanced scheme)

A numerical scheme is well-balanced if for all discrete steady state
(wn

i )i∈Z, the scheme satisfies wn+1
i = wn

i , for all i ∈ Z.
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this is our well-balanced condition !



another way of seeing this is to say: 

 we can solve the missing equations for the “changing the speed u* ” 
relaxation problem by using the well-balanced constraint.

artificially change the speed of u*



The relaxation scheme
The relaxation scheme associated with both previous models writes

wn+1
i = wn

i −
∆t

∆x

(

F(wn
i , wn

i+1) − F(wn
i−1, wn

i )
)

+
∆t

2

(

s+(wn
i−1, wn

i )
φi − φi−1

∆x
+ s−(wn

i , wn
i+1)

φi+1 − φi

∆x

)

,

where the numerical flux is defined by

f (wL,wR)=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(ρLuL, ρLu2
L

+pL, uL(EL+pL))T
if uL− ν

ρL
>0,

(ρ∗

L
u∗, ρ∗

L
(u∗)2+π∗

L
, u∗(E∗

L
+π∗

L
))T

if uL− ν
ρL

<0<u∗,

(ρ∗

R
u∗, ρ∗

R
(u∗)2+π∗

R
, u∗(E∗

R
+π∗

R
))T

if u∗<0<uR+ ν
ρR

,

(ρRuR, ρRu2
R

+pR, uR(ER+pR))T
if uR+ ν

ρR
<0,

and the numerical source terms are defined by

s+(wL,wR)=−(sgn(u∗)+1)
(

0,
ρL+ρR

2 ,
ρL+ρR

2 u∗

)T

,

s−(wL,wR)=(sgn(u∗)−1)
(

0,
ρL+ρR

2 ,
ρL+ρR

2 u∗

)T

.
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Properties of the relaxation scheme

Theorem (Well-balancedness)

The relaxation scheme preserves the steady states at rest:

∀i ∈ Z,

⎧

⎨

⎩

un
i = 0

pn
i+1 − pn

i = −
ρn

i
+ρn

i+1
2 (φi+1 − φi)

⇒ ∀i ∈ Z, wn+1
i = wn

i

Theorem (Robustness)

Assume the parameter ν satisfies the following inequalities:

uL − ν
ρL

< u∗ < uR + ν
ρR

, eL +
π∗

L

2−pL
2

2ν2 > 0, eR +
π∗

R

2−pR
2

2ν2 > 0.

Assume the following CFL condition is satisfied:

∆t

∆x
max
i∈Z

|un
i ± ν/ρn

i | ≤
1

2

Then the relaxation scheme preserves the set of physical states:

∀i ∈ Z, ρn
i > 0 and en

i > 0 ⇒ ∀i ∈ Z, ρn+1
i > 0 and en

i > 0.
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This is a first order well-balanced method. This can be made 
higher order by using a variant of “surface gradient method” from 
shallow water equations:

SURFACE GRADIENT METHOD 3

FIG. 1. Definition sketch for bed topography.

where φ = gh is the geopotential; g = 9.81 m/s2 is the acceleration due to gravity; ρ is
the water density; h is the water depth; H is the partial depth between a fixed reference
level and the bed surface (see definition sketch in Fig. 1 for the 1D case); u and v are
the x and y components of flow velocity, respectively; V is the velocity vector defined by
V = ui+ vj; Sb is the bed slope term; and S f is the bed shear stress term, with x and y
components defined by depth-averaged velocities

τ f x = ρC f u
√
u2 + v2, τ f y = ρC f v

√
u2 + v2, (4)

where C f is the bed friction coefficient, which may either be constant or estimated from
C f = g/C2z , where Cz is the Chezy constant.

3. THE SURFACE GRADIENT METHOD (SGM)

An accurate data reconstruction scheme is proposed for the 2D shallow-water equations.
For clarity, the following descriptionwill be restricted to the x direction. The same procedure
can similarly be applied to the y direction and need not be repeated here.
To solve the continuity equation, fluxes based on the conservative variables are required

at the cell interface. In higher order accurate Godunov-type methods, the values of the
conservative variables within a cell are calculated using a reconstruction method based on
the cell center data. Usually, a piecewise linear reconstruction is used, leading to a second
order scheme, e.g., for φ within the cell i (Fig. 1)

φ = φi + (x − xi )δφi , (5)

where δφi is the gradient of φ calculated by

δφi = G
(

φi+1 − φi

xi+1 − xi
,
φi − φi−1

xi − xi−1

)
, (6)

use ⌘ instead of h for reconstruction



Numerical test: perturbation of an hydrostatic atmosphere

Perfect gas law:
p = (γ − 1)

(

E − ρu2/2
)

Constant gravitational
field: φ(x) = gx

Steady state ws(x):
hydrostatic atmosphere
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ρs(x) =
(

1 − γ−1
γ gx

)
1

γ−1

us(x) = 0

ps(x) = ρs(x)γ

Boundary condition:
u(0, t) = 0.1 sin(6πt)

Perturbation:
δw(x, t) = w(x, t) − ws(x)

0 0.5 1 1.5 2

−0.1

−0.05

0

0.05

0.1

 

 
1st order
MUSCL
reference

Final time perturbation in velocity δu(x, T )
computed with 1.024 cells.
The reference solution is computed with
32.768 cells with the first-order relaxation
scheme.
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jointly with Ohlmann, Röpke, Springel, Zenk: 
“A second order well-balanced scheme  on multi-dimensional unstructured grid”, 
work in progress

Project EXAMAG

Exascale Simulations of the Magnetic Universe
Prof. Volker Springel (Heidelberg), Prof. Christian Klingenberg (Würzburg)

SPPEXA — DFG Priority Program 1648 

The AREPO code – an innovative technique

Key Science Drivers

Advantages of this approach

Area 1 – achieving exascale scalability

Area 2 – improving magnetic field solvers

Work plan

Longer-term perspective

● Can galaxies form successfully from ΛCDM cosmological
initial conditions?

● What role do magnetic fields and anisotropic transport of heat 
and cosmic rays play in cosmic structure formation?

● How do we arrive at highly accurate and extremely scalable 
hydrodynamical algorithms for astrophysical fluid dynamics?

● Do novel discretization schemes for astrophysical 
hydrodynamics offer significant cost/accuracy advantages? 

Cosmology relies on the exploitation of HPC techniques 
at the leading edge – only possible with suitable codes

● Very low numerical viscosity, greatly reduced advection errors

● High accuracy for shocks, fluid instabilities and turbulence

● Full adaptivity and manifest Galilean invariance

● Makes larger timesteps possible in supersonic flows

● Better suited to cosmic structure formation than AMR and SPH

Recent project results

Postdoc (Heidelberg):
Leads scaling work on the code, implements 
new DG and FMM solvers, coordinates and 
carries out science applications, prepares 
public code release

Postdocs (Tokyo):
Implement advanced chemical and radiative 
processes in AREPO needed for 1st star 
formation, hierachical zoom initial conditions 

● Finish multi-treading in all parts of the code

● Explicitly vectorize compute intensive parts

● Implement GPU and many core for gravity and mesh calculations

● Adopt MPI-3 features (e.g. asynchronous collectives)

● Improve ability to do on-the-fly data reduction and postprocessing

● Public release of the AREPO and GADGET4 codes

● Include radiative transport

● Investigate applications outside astrophysics 

Postdoc + PhD (Würzburg):
Improve slope-limiting and MHD in 
the discontinuous Galerkin solver, 
work on anisotropic transport solver, 
optimal time-stepping methods, and  
DG on moving meshes

Postdoc + PhD (Strasbourg):
Develop kinetic methods for AREPO, 
task graph approaches for code 
validation, and optimal use of 
heterogenous architectures

Finite-volume hydrodynamics on a fully adaptive and dynamically moving Voronoi mesh, 
yielding quasi-Lagrangian behavior. The code is coupled to a powerful TreePM solver for 
self-gravity and the additional treatment of a collisionless fluid (dark matter).

The AREPO code has been used for the most advanced simulation of galaxy for-
mation thus far, and for the first direct predictions of the magnetic field in the Galaxy

Area 3 – discontinuous Galerkin (DG) solvers

● Stable and locally conservative

● Can deliver high-order accuracy

● Can easily handle complex geometries

● Well parallelizable, small stencils

● Improved computational efficiency

● Magnetic fields crucial for the regulation of 
star formation, and the intracluster medium

● The div B = 0 constraint is difficult to 
guarantee numerically

● New numerical solvers that are robust on 
unstructured moving grids need to be 
developed and implemented

● New positivity preserving schemes for fluid 
dynamics desirable for improved robustness

Illustris Simulation 
up to 26224 cores (CURIE and SuperMUC), 
19 million core hours

Prof. Naoki Yoshida (Tokyo), Prof. Phillippe Hulluy (Strasbourg)

Auriga Project
up to 16384 cores (SuperMUC), more than one billion resolution elements in single galaxy

Illustris

Area 4 – anisotropic transport

● Magnetic fields channel heat and 
cosmic rays along field lines

● The magnetothermal and heat-flux 
driven buoyancy instability induce 
galaxy cluster turbulence

● Cosmological simulations combining 
magnetohydrodynamics and cosmic 
rays are needed to explain galactic 
winds and outflows

convergene rate at different order for a stationary 
vortex in our current DG implementation

hydrodynamical simulation sizes as 
a function of publication time

x

y

  

Voronoi and Delaunay tessellations provide unique partitions of 
space based on a given sample of mesh-generating points
 

BASIC PROPERTIES OF VORONOI AND DELAUNAY MESHES

Voronoi mesh Delaunay triangulation both shown together

● Each Voronoi cell contains the space closest to its generating point

● The Delaunay triangulation contains only triangles with an empty circumcircle.  The 
Delaunay tiangulation maximizes the minimum angle occurring among all triangles.

● The centres of the circumcircles of the Delaunay triangles are the vertices of the Voronoi 
mesh. In fact, the two tessellations are the topological dual graph to each other.
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Suliciu relaxation – Riemann problem

With w := (⇢, u, e,⇡), the structure of the approximate Riemann
solver is:
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(based on a Figure by Markus Zenk)
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Well balancing - solution

The solution in the di↵erent regions is now
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Well-balancing - system

The Euler equations with gravity are extended to include an
additional quantity, the relaxed potential Z :
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One degree of freedom is left, which is used to impose a
discretization of the hydrostatic equilibrium:
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) ,

where ⇢ can be defined in a suitable way to preserve specific
equilibria.

gravitational potential

recall our re
laxation well-

balanced method:
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Figure 39. Time evolution of the mixing of two fluids induced by the motion of a solid object. This test illustrates the ability of AREPO to cope with arbitrarily
curved, moving boundary conditions. As illustrated, the orange ‘spoon’ is moved on a circular path, through a two-phase gaseous medium that is initially at
rest. The mixing is shown in terms of a tracer dye that is advected with the flow, and which was given an initial value of 1 (white) in the lower-density top
phase, and a value of 0 (black) in the higher-density lower phase. Each frame shows the value of the dye in grey-scale, at different times as labelled. The square
domain was initially populated with a 768 × 768 mesh-generating points on a Cartesian grid, and has reflective boundary conditions at the outer walls.

fluid variables by the code. In Fig. 39, we show the value of
this dye as function of time, with the solid body displayed in
orange.

It is nicely seen how the motion of the object induces complex
gas motions, including the generation of vorticity and turbulence.
This eventually leads to a complete mixing of the two phases, but for
a long time partially mixed regions survive. Thanks to the motion
of the mesh with the flow, contact discontinuities between the two
media can be advected almost without numerical errors, allowing
the foliated structure of partially mixed fluid to remain intact even
while moving. Such a low level of numerical diffusivity would be
very difficult to achieve with an Eulerian treatment.

9 TEST PRO BLEMS W ITH SELF-GRAVITY

As the long discussion in Section 5 made clear, an accurate treatment
of self-gravity in finite-volume codes is actually a surprisingly subtle
and tricky problem, more so than in SPH. In this section, we will
first discuss a 3D gravitational collapse problem of a cold gaseous
sphere, which is a good test for energy conservation in the presence
of a strong virialization shock, a scenario that is of direct relevance
for cosmological simulations. We then examine the collapse of
Zeldovich pancakes as a basic test of the cosmological integration in
AREPO. We finally turn to two example applications of our new code,
a colliding galaxy problem and the ‘Santa Barbara cluster’. Both
of these problems are primarily meant to illustrate that the AREPO

code introduced here is fully functional and suitable for science
applications in computational cosmology.

9.1 Evrard’s collapse test

Evrard (1988) has introduced an interesting collapse problem that
has been frequently used in the literature to test SPH simulation
codes (e.g. Hernquist & Katz 1989; Dave, Dubinski & Hernquist
1997; Springel, Yoshida & White 2001; Wadsley, Stadel & Quinn
2004); but results for mesh codes have been rarely reported. The
initial conditions consist of a sphere of gas with mass M = 1 and
radius R = 1, with an initial density profile of the form

ρ(r) =
{

M/(2πR2r) for r ≤ R

0 for r > R.
(126)

The gas with adiabatic index γ = 5/3 is initially at rest and has
thermal energy u= 0.05 per unit mass, which is negligible compared
with the gravitational binding energy (assuming G = 1).

In the beginning of the evolution, the gas is freely falling towards
the origin under self-gravity. Eventually, it bounces back in the
centre, with a strong shock propagating outwards through the still
infalling outer parts of the gas sphere. The system then virializes
and settles to a spherical distribution in hydrostatic virial equilib-
rium. The time evolution of the system is hence characterized by a
conversion of gravitational potential energy first to kinetic energy,
and then to heat energy. As such, it tests a situation that is prototyp-
ical for gravitationally driven structure growth, and also provides a
sensitive test of the ability of a code to conserve the total energy
accurately in self-gravitating gaseous systems.

In Fig. 40, we show radial profiles of density, velocity and en-
tropic function A = P/ργ at time t = 0.8, when the strong shock has
formed. We compare simulations carried out with different calcula-
tional schemes, but all with the same number of 24 464 resolution
elements in the initial radius of the sphere. The top three rows give

C⃝ 2009 The Author. Journal compilation C⃝ 2009 RAS, MNRAS 401, 791–851
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Figure 39. Time evolution of the mixing of two fluids induced by the motion of a solid object. This test illustrates the ability of AREPO to cope with arbitrarily
curved, moving boundary conditions. As illustrated, the orange ‘spoon’ is moved on a circular path, through a two-phase gaseous medium that is initially at
rest. The mixing is shown in terms of a tracer dye that is advected with the flow, and which was given an initial value of 1 (white) in the lower-density top
phase, and a value of 0 (black) in the higher-density lower phase. Each frame shows the value of the dye in grey-scale, at different times as labelled. The square
domain was initially populated with a 768 × 768 mesh-generating points on a Cartesian grid, and has reflective boundary conditions at the outer walls.

fluid variables by the code. In Fig. 39, we show the value of
this dye as function of time, with the solid body displayed in
orange.

It is nicely seen how the motion of the object induces complex
gas motions, including the generation of vorticity and turbulence.
This eventually leads to a complete mixing of the two phases, but for
a long time partially mixed regions survive. Thanks to the motion
of the mesh with the flow, contact discontinuities between the two
media can be advected almost without numerical errors, allowing
the foliated structure of partially mixed fluid to remain intact even
while moving. Such a low level of numerical diffusivity would be
very difficult to achieve with an Eulerian treatment.

9 TEST PRO BLEMS W ITH SELF-GRAVITY

As the long discussion in Section 5 made clear, an accurate treatment
of self-gravity in finite-volume codes is actually a surprisingly subtle
and tricky problem, more so than in SPH. In this section, we will
first discuss a 3D gravitational collapse problem of a cold gaseous
sphere, which is a good test for energy conservation in the presence
of a strong virialization shock, a scenario that is of direct relevance
for cosmological simulations. We then examine the collapse of
Zeldovich pancakes as a basic test of the cosmological integration in
AREPO. We finally turn to two example applications of our new code,
a colliding galaxy problem and the ‘Santa Barbara cluster’. Both
of these problems are primarily meant to illustrate that the AREPO

code introduced here is fully functional and suitable for science
applications in computational cosmology.

9.1 Evrard’s collapse test

Evrard (1988) has introduced an interesting collapse problem that
has been frequently used in the literature to test SPH simulation
codes (e.g. Hernquist & Katz 1989; Dave, Dubinski & Hernquist
1997; Springel, Yoshida & White 2001; Wadsley, Stadel & Quinn
2004); but results for mesh codes have been rarely reported. The
initial conditions consist of a sphere of gas with mass M = 1 and
radius R = 1, with an initial density profile of the form

ρ(r) =
{

M/(2πR2r) for r ≤ R

0 for r > R.
(126)

The gas with adiabatic index γ = 5/3 is initially at rest and has
thermal energy u= 0.05 per unit mass, which is negligible compared
with the gravitational binding energy (assuming G = 1).

In the beginning of the evolution, the gas is freely falling towards
the origin under self-gravity. Eventually, it bounces back in the
centre, with a strong shock propagating outwards through the still
infalling outer parts of the gas sphere. The system then virializes
and settles to a spherical distribution in hydrostatic virial equilib-
rium. The time evolution of the system is hence characterized by a
conversion of gravitational potential energy first to kinetic energy,
and then to heat energy. As such, it tests a situation that is prototyp-
ical for gravitationally driven structure growth, and also provides a
sensitive test of the ability of a code to conserve the total energy
accurately in self-gravitating gaseous systems.

In Fig. 40, we show radial profiles of density, velocity and en-
tropic function A = P/ργ at time t = 0.8, when the strong shock has
formed. We compare simulations carried out with different calcula-
tional schemes, but all with the same number of 24 464 resolution
elements in the initial radius of the sphere. The top three rows give

C⃝ 2009 The Author. Journal compilation C⃝ 2009 RAS, MNRAS 401, 791–851

sphere with radius R

initial condition:
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Figure 39. Time evolution of the mixing of two fluids induced by the motion of a solid object. This test illustrates the ability of AREPO to cope with arbitrarily
curved, moving boundary conditions. As illustrated, the orange ‘spoon’ is moved on a circular path, through a two-phase gaseous medium that is initially at
rest. The mixing is shown in terms of a tracer dye that is advected with the flow, and which was given an initial value of 1 (white) in the lower-density top
phase, and a value of 0 (black) in the higher-density lower phase. Each frame shows the value of the dye in grey-scale, at different times as labelled. The square
domain was initially populated with a 768 × 768 mesh-generating points on a Cartesian grid, and has reflective boundary conditions at the outer walls.

fluid variables by the code. In Fig. 39, we show the value of
this dye as function of time, with the solid body displayed in
orange.

It is nicely seen how the motion of the object induces complex
gas motions, including the generation of vorticity and turbulence.
This eventually leads to a complete mixing of the two phases, but for
a long time partially mixed regions survive. Thanks to the motion
of the mesh with the flow, contact discontinuities between the two
media can be advected almost without numerical errors, allowing
the foliated structure of partially mixed fluid to remain intact even
while moving. Such a low level of numerical diffusivity would be
very difficult to achieve with an Eulerian treatment.
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As the long discussion in Section 5 made clear, an accurate treatment
of self-gravity in finite-volume codes is actually a surprisingly subtle
and tricky problem, more so than in SPH. In this section, we will
first discuss a 3D gravitational collapse problem of a cold gaseous
sphere, which is a good test for energy conservation in the presence
of a strong virialization shock, a scenario that is of direct relevance
for cosmological simulations. We then examine the collapse of
Zeldovich pancakes as a basic test of the cosmological integration in
AREPO. We finally turn to two example applications of our new code,
a colliding galaxy problem and the ‘Santa Barbara cluster’. Both
of these problems are primarily meant to illustrate that the AREPO

code introduced here is fully functional and suitable for science
applications in computational cosmology.

9.1 Evrard’s collapse test

Evrard (1988) has introduced an interesting collapse problem that
has been frequently used in the literature to test SPH simulation
codes (e.g. Hernquist & Katz 1989; Dave, Dubinski & Hernquist
1997; Springel, Yoshida & White 2001; Wadsley, Stadel & Quinn
2004); but results for mesh codes have been rarely reported. The
initial conditions consist of a sphere of gas with mass M = 1 and
radius R = 1, with an initial density profile of the form

ρ(r) =
{

M/(2πR2r) for r ≤ R

0 for r > R.
(126)

The gas with adiabatic index γ = 5/3 is initially at rest and has
thermal energy u= 0.05 per unit mass, which is negligible compared
with the gravitational binding energy (assuming G = 1).

In the beginning of the evolution, the gas is freely falling towards
the origin under self-gravity. Eventually, it bounces back in the
centre, with a strong shock propagating outwards through the still
infalling outer parts of the gas sphere. The system then virializes
and settles to a spherical distribution in hydrostatic virial equilib-
rium. The time evolution of the system is hence characterized by a
conversion of gravitational potential energy first to kinetic energy,
and then to heat energy. As such, it tests a situation that is prototyp-
ical for gravitationally driven structure growth, and also provides a
sensitive test of the ability of a code to conserve the total energy
accurately in self-gravitating gaseous systems.

In Fig. 40, we show radial profiles of density, velocity and en-
tropic function A = P/ργ at time t = 0.8, when the strong shock has
formed. We compare simulations carried out with different calcula-
tional schemes, but all with the same number of 24 464 resolution
elements in the initial radius of the sphere. The top three rows give
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Figure 39. Time evolution of the mixing of two fluids induced by the motion of a solid object. This test illustrates the ability of AREPO to cope with arbitrarily
curved, moving boundary conditions. As illustrated, the orange ‘spoon’ is moved on a circular path, through a two-phase gaseous medium that is initially at
rest. The mixing is shown in terms of a tracer dye that is advected with the flow, and which was given an initial value of 1 (white) in the lower-density top
phase, and a value of 0 (black) in the higher-density lower phase. Each frame shows the value of the dye in grey-scale, at different times as labelled. The square
domain was initially populated with a 768 × 768 mesh-generating points on a Cartesian grid, and has reflective boundary conditions at the outer walls.

fluid variables by the code. In Fig. 39, we show the value of
this dye as function of time, with the solid body displayed in
orange.

It is nicely seen how the motion of the object induces complex
gas motions, including the generation of vorticity and turbulence.
This eventually leads to a complete mixing of the two phases, but for
a long time partially mixed regions survive. Thanks to the motion
of the mesh with the flow, contact discontinuities between the two
media can be advected almost without numerical errors, allowing
the foliated structure of partially mixed fluid to remain intact even
while moving. Such a low level of numerical diffusivity would be
very difficult to achieve with an Eulerian treatment.
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As the long discussion in Section 5 made clear, an accurate treatment
of self-gravity in finite-volume codes is actually a surprisingly subtle
and tricky problem, more so than in SPH. In this section, we will
first discuss a 3D gravitational collapse problem of a cold gaseous
sphere, which is a good test for energy conservation in the presence
of a strong virialization shock, a scenario that is of direct relevance
for cosmological simulations. We then examine the collapse of
Zeldovich pancakes as a basic test of the cosmological integration in
AREPO. We finally turn to two example applications of our new code,
a colliding galaxy problem and the ‘Santa Barbara cluster’. Both
of these problems are primarily meant to illustrate that the AREPO

code introduced here is fully functional and suitable for science
applications in computational cosmology.

9.1 Evrard’s collapse test

Evrard (1988) has introduced an interesting collapse problem that
has been frequently used in the literature to test SPH simulation
codes (e.g. Hernquist & Katz 1989; Dave, Dubinski & Hernquist
1997; Springel, Yoshida & White 2001; Wadsley, Stadel & Quinn
2004); but results for mesh codes have been rarely reported. The
initial conditions consist of a sphere of gas with mass M = 1 and
radius R = 1, with an initial density profile of the form

ρ(r) =
{

M/(2πR2r) for r ≤ R

0 for r > R.
(126)

The gas with adiabatic index γ = 5/3 is initially at rest and has
thermal energy u= 0.05 per unit mass, which is negligible compared
with the gravitational binding energy (assuming G = 1).

In the beginning of the evolution, the gas is freely falling towards
the origin under self-gravity. Eventually, it bounces back in the
centre, with a strong shock propagating outwards through the still
infalling outer parts of the gas sphere. The system then virializes
and settles to a spherical distribution in hydrostatic virial equilib-
rium. The time evolution of the system is hence characterized by a
conversion of gravitational potential energy first to kinetic energy,
and then to heat energy. As such, it tests a situation that is prototyp-
ical for gravitationally driven structure growth, and also provides a
sensitive test of the ability of a code to conserve the total energy
accurately in self-gravitating gaseous systems.

In Fig. 40, we show radial profiles of density, velocity and en-
tropic function A = P/ργ at time t = 0.8, when the strong shock has
formed. We compare simulations carried out with different calcula-
tional schemes, but all with the same number of 24 464 resolution
elements in the initial radius of the sphere. The top three rows give

C⃝ 2009 The Author. Journal compilation C⃝ 2009 RAS, MNRAS 401, 791–851
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jointly with Ujjwal Koley and Rony Touma: 
“Well-balanced unstaggered central schemes for the Euler equations with gravity”,
 SIAM J. Sci. Comp (2015)

We construct a non-staggered central scheme, combine it with the 
“surface gradient method” in order to get a second order well-balanced 
scheme.

maintains specific equilibria: isothermal stationary solutions
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Figure 4.3. Test case 3. Perturbation of an equilibrium state; profile of the
pressure disturbance at time t = 0.2 on 100 and 200 gridpoints. fig:1d3

along the x−axis (solid curve) and the solution of the corresponding one-dimensional problem
(x-curve); both curves are in perfect.

Figure 4.4. Test case 4. Two-dimensional shock tube problem: profiles of the
mass density (left) and the pressure obtained at the final time using the proposed
numerical scheme on 200× 10 gridpoints fig:2d4a

4.2.2. Test case 5. Isothermal equilibrium solution. This test case is used to validate the well-
balanced property of the proposed two-dimensional scheme and its capability of maintaining equi-
librium states at the discrete level. As in [14], we consider for our computational domain the unit
square [0, 1]2, we set the gas constant γ = 1.4, and we set the gravitational constants g1 and g2 to
be one. The isothermal equilibrium state under consideration takes then the form

ρ(x, y) = ρ0 exp

(
−
ρ0
p0

(g1x+ g2y)

)
, u(x, y) = v(x, y) = 0,

p(x, y) = p0 exp

(
−
ρ0
p0

(g1x+ g2y)

)
,

with the parameters ρ0 = 1.21 and p0 = 1. We set the initial conditions to be exactly the

Perturbation of an equilibrium state; profile of the pressure disturbance at time t = 0.2

t=0

t=0.2
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Figure 4.7. Test case 6: Profile of the perturbation of an equilibrium state;
density disturbance at time t = 0.25 on 50× 50 gridpoints. fig:2d6a

simple transmissive boundary conditions. The obtained numerical results are reported in figure 4.7
where we show the profile of density perturbation (left) and its contour lines (right) and in figure
4.8 where we show the profile of the pressure perturbation (left) and its contour lines (right). The
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Figure 4.8. Test case 6: Profile of the perturbation of an equilibrium state;
density disturbance at time t = 0.25 on 50× 50 gridpoints. fig:2d6b

obtained numerical results are in perfect agreement with those presented in [14], thus confirming
the efficiency and potential of the proposed scheme to handle small perturbations of equilibrium
solutions.

4.2.4. Test case 7: Unidirectional perturbation of an equilibrium solution. In this test case we
consider a two-dimensional extension of the one-dimensional perturbation problem of an equi-
librium state previously considered in test case 3. We consider for our computational domain
the unit square which we discretize using 50 gridpoints. A unidirectional gravitational field
is considered with constants g1 = 1 and g2 = 0. The corresponding isothermal equilibrium
solutions for the density and the pressure are ρ(x, y, t) = ρ0(x, y, t = 0) = exp(−g1x) and
p(x, y, t) = p0(x, y, t = 0) = exp(−g1x), respectively. The initial conditions are set to be the
equilibrium solution for the density, u = v = 0, and a small perturbation of the equilibrium
pressure defined by

p0(x, y, t = 0) = exp(−g1x) + η exp(−100(x− 0.5)2),

with η = 0.001. The numerical solution is computed at the final time tf = 0.25, and the obtained
results are reported in figure 4.9 where we show the density perturbation (left) and the pressure

perturbation of an equilibrium state
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Figure 4.11. Test case 8. Circular Riemann problem: profile of the density at
time t = 0.0724 (left) and t = 0.144 (right) on 50× 50 gridpoints. Two circular
shock waves are propagating outward and an rarefaction wave is moving towards
the center of the computational domain to form a downward shock wave. fig:2d8a

circular shocks propagating outward and a rarefaction wave is propagating towards the center of
the computational domain. The shock waves are further developed at time t = 0.144 (figure 4.11
right) and the rarefaction is about to become a downward shock wave. Figure 4.12 (left) shows
the profile of the density at the final time tf = 0.2. Figure 4.12 (right) shows two cross sections
of the mass density along the line y = x obtained on 602 and 2002 gridpoints. Both curves are in
good match thus confirming the efficiency of the proposed scheme.
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Figure 4.12. Test case 8. Circular Riemann problem: profile of the density at
the final time tf = 0.2 (left) and two cross sections of the density along the line
y = x obtained on 602 and 2002 gridpoints. fig:2d8b

5. Conclusion

In this work we developed a well-balanced unstaggered central finite volume method for the
numerical solution of systems of Euler equations with gravity in one and two space dimensions. The
proposed method is shown to satisfy exactly the isothermal equilibrium at the discrete level and is
characterized by its simplicity and efficiency. In fact the proposed method avoids the resolution of
the Riemann problems arising at the cell interfaces thanks to staggered dual cells intermediately
used while updating the numerical solution. Careful projections of the updated solutions back onto
the original cells retrieves the solution values at the cell centers. To ensure well-balancing sensor
functions are carefully used to discretize the source term of the Euler with gravity system according



WELL-BALANCED UNSTAGGERED CENTRAL SCHEMES FOR THE

EULER EQUATIONS WITH GRAVITATION

R. TOUMA, U. KOLEY, AND C. KLINGENBERG

Abstract. We consider the Euler equations with gravitational source term and propose a new
well-balanced unstaggered central finite volume scheme, which can preserve the hydrostatic
balance state exactly. The proposed scheme evolves a non-oscillatory numerical solution on a
single grid, avoids the time consuming process of solving Riemann problems arising at the cell
interfaces, and is second-order accurate both in time and space. Furthermore, the numerical
scheme follows a well balanced discretization that first discretizes the gravitational source term
according to the discretization of the flux terms, and then mimics the surface gradient method
and discretizes the density and energy according to the discretization of steady state density
and enregy functions, respectively. Finally, several numerical experiments demonsrtating the
performance of the well-balanced schemes in both one and two spatial dimensions are presented.
The results indicate that the new scheme is accurate, simple, e�cient and robust.

1. Introduction

1.1. The model. Many interesting physical phenomena are modeled by the Euler equations with
gravitational source terms. These equations express the conservation of mass, momentum and
energy, which take the form in two dimensions

(1.1)

8
>>><

>>>:

⇢
t

+ (⇢u)
x

+ (⇢v)
y

= 0,

(⇢u)
t

+
�
⇢u2 + p

�
x

+ (⇢uv)
y

= �⇢�
x

,

(⇢v)
t

+ (⇢uv)
x

+
�
⇢v2 + p

�
y

= �⇢�
y

,

E
t

+ ((E + p)u)
x

+ ((E + p)v)
y

= �⇢u�
x

� ⇢v�
y

.

Here, ⇢ denotes the fluid density, (u, v) is the velocity field, p represents the pressure, and E =
1
2⇢(u

2 + v2) + p/(� � 1) is the non-gravitational energy which includes the kinetic and internal
energy of the fluid. Furthermore, � is the ratio of specific heats and � = �(x, y) is the time
independent gravitational potential. When the variation of the unknowns in the y-direction are
negligible, one may find the one-dimensional version of (1.1) by setting v and all the derivatives
in the y-direction to zero, thus obtaining the system

(1.2)
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Equation (1.2) has been used to study the atmospheric phenomena that are essential in numer-
ical weather prediction[2], and in climate modeling as well as in a wide variety of contexts in
astrophysics such as modeling solar climate or simulating supernova explosions[11, 7].

The Euler equation with gravitation (1.1) amounts to a system of balance laws,

(1.3) U
t

+ F(U)
x

+G(U)
y

= �S(U),
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Gravitational field.
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For the Euler equations with gravity

we found a well balanced methods.

Consider flow that is a perturbation of the hydrostatic equilibrium, the flow is then 
close to incompressible flow.
Thus we need a solver that

- maintains hydrostatic equilibria well
- can solve low (as well as high) Mach number flow well.



This is work in progress.

The finite volume well-balanced solver should in satisfy

• correct behavior of its dissipation matrix at low Mach numbers
• ensure kinetic energy is maintained near the incompressible regime
• be a linearly stable scheme
• the inversion of the large system of equations arising from implicit time 

discretization should have a good condition number



1D white dwarf to multi-D

I From 1D stellar evolution code choose appropiate timestep prior
to nova and extract physical values: ⇢,T ,Xnuc

I Map this profile to 2D (3D) using SLH

Alejandro Bolaños-Rosales (Uni Würzburg) Atmospheres of stars with a low-Mach-number well-balanced code

Numerical simulation of the code of the Fritz Röpke code for stellar 
convection.
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